skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valach, Fridrich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a theory of Ricci flow for metrics on Courant algebroids which unifies and extends the analytic theory of various geometric flows, yielding a general tool for constructing solutions to supergravity equations. We prove short-time existence and uniqueness of solutions on compact manifolds, in turn showing that the Courant isometry group is preserved by the flow. We show a scalar curvature monotonicity formula and prove that generalized Ricci flow is a gradient flow, extending fundamental works of Hamilton and Perelman. Using these we show a convergence result for certain nonsingular solutions to generalized Ricci flow. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026